GEMINI SL Total Knee Replacement

The complete system for greater flexibility in primary knee arthroplasty.

At a glance


  • High degree of joint stability and good kinematics
  • High primary stability
  • Natural joint reconstruction with physiological freedom of movement and functionality1, 2, 3
  • Successful long-term clinical outcomes4
  • 5 yrs 97.5%
  • 10 yrs 95.5%
  • Extended range of indications and comprehensive treatment options with intraoperative flexibility


Visit our GEMINI spar-k microsite: www.link-ortho.com/spar-k/

The GEMINI SL Total Knee System is part of the LINK SL Knee Family concept. SL stands for “System-integrated soLution”:
 

  • Extended compatibility of all prosthesis components.
  • Implant system for primary and revision knee surgery.
     

Fixed Bearing CR

Fixed Bearing PS

Mobile Bearing

The GEMINI SL Total Knee System includes the following three configurations:
 

  • Fixed Bearing CR (Cruciate Retaining).
  • Fixed Bearing PS (Posterior Stabilized).
  • Mobile Bearing.

Fixed Bearing CR

  • Cruciate Retaining configuration for use with intact ligaments and capsule and adequate joint stability.
  • Featuring extended trochlear groove.
  • Same tibial component for Fixed Bearing CR and PS.

Fixed Bearing PS

  • Posterior Stabilized configuration for use in the absence of posterior cruciate ligament (PCL) function.
  • Providing reduced risk of dislocation and reduced contact pressure in deep flexion2.
  • Featuring bone-preserving design with size-specific intercondylar femoral box dimensions.

Mobile Bearing

  • Rotating platform configuration for use with or without posterior cruciate ligament.
  • Highly congruent articulating surfaces that allow large tibio-femoral contact area throughout the entire range of motion, even with absent posterior cruciate ligament 3.
  • Unique tibial locking mechanism providing reduced risk of tibial insert dislocation and large contact area with tibial baseplate.

LINK PorEx Technology

  • TiNbN = Titanium Niobium Nitride Surface Modification resulting in a ceramic-like surface, which significantly reduces cobalt, chromium and nickel ion release4.
  • Extremely hard surface with abrasion properties similar to those of ceramics.
  • Larger wetting angle of the surface gives it a low friction coe fficient when in contact with synovial fluid3.
Read more
Read less

Sources

  1. H. Thabe, „Auswirkungen verschiedener konstruktiver Prothesenmerkmale auf Langzeitergebnisse“, Akt Rheumatol 2013;38.
  2. Internal data - H. Thabe, „Aspekte zum Konzept der beweglichen Tibiaplateaukonstruktion, April 2000.
  3. J. Goodfellow, “The Mechanics of the Knee and Prosthesis Design”. J Bone Joint Surg Br 1978; 60:358-369
  4. ripo.cineca.it/pdf/relazione_2016_v19_inglese.pdf
  5. Internal data - H. Thabe, “ Arthroprometic sizing in TKA / GEMINI MK2”
  6. P.S. Walker, “A Comparative Study of Uncemented Tibial Components”. J Arthroplasty 1990; 5:245-253
  7. A. Completo et al., “The influence of different tibial stem designs in load sharing and stability at the cement-bone interface in revision TKA”. Knee 2008;15:227-232
  8. S. Bignozzi, “Three different cruciate-sacrificing TKA designs: minor intraoperative kinematic differences and negligible clinical differences”. Knee Surg Sports Traumatol Arthrosc 2014; 22:3113-3120
  9. B. Innocenti, GEMINI SL Mobile Bearing / Fixed Bearing CR Biomechanical analysis in healthy and deficient PCL patient LINK 999_WP_003_2017_Gemini-SL_en, 2017
  10. J. Callaghan, “Mobile-Bearing Knee Replacement: Concept and Results”. AAOS Instructional Course Lectures 2001; 50:431-449
  11. D. Dennis, “Mobile Bearing Total Knee Arthroplasty Design Factors in Minimizing Wear”. Clin Orthop Relat Res. 2006; 452:70-77
  12. Internal data - S. Greenwald, “Classification of Mobile Bearing Knee Design: Mobility and Constraint”, 2002
  13. B. Innocenti, GEMINI SL Fixed Bearing PS: Biomechanical Analysis of the Post-Cam System. LINK 999_WP_002_2017_Gemini-SL_en, 2019
  14. Internal technical report: Study of the influence of TiNbN-coating on the ion release of CrCrMo-alloys in SBF buffer simulator testing.
  15. GR Scuderi, WN Scott, “Total Knee Arthroplasty. What we have learned.”1996; Am J Knee Surg 9:73-75
  16. S. M. Kurtz, „The Origins and Adaptations of UHMWPE for Knee Replacement“, in UHMWPE Biomaterials Handbook, S. M. Kurtz, Ed., Burlington, MA Academic Press 2009.
  17. S. M. Kurtz, „Advances in the Processing, Sterilization, and Crosslinking of Ultra-high Molecular Weight Polyethylene for Total Joint Arthroplasty“, Biomaterials 1999; 20:1659-1687.
  18. E. M. Brach del Prever, „UHMWPE for Arthroplasty: Past or Future?“, J Orthopaed Traumatol 2009; 10:1-8
  19. Produktakte W. LINK (Quadrant, MediTECH Data Sheet)
  20. E. Oral, „Characterization of Irradiated Blends of Alpha-tocopherol and UHMWPE“, Biomaterials 2005; 26(33):6657-6663.
  21. E. Oral, „Highly Crosslinked UHMWPE Doped with Vitamin E“, in UHMWPE Biomaterials Handbook, S. M. Kurtz, Ed., Burlington, MA Academic Press 2009.
  22. S. M. Kurtz, „Vitamin-E-Blended UHMWPE Biomaterials“, in UHMWPE Biomaterials Handbook, S. M. Kurtz, Ed., Burlington, MA Academic Press 2009.
  23. S. M. Kurtz, „Trace Concentration of Vitamin E Protect Radiation Crosslinked UHMWPE from Oxidative Degradation“, J Biomed Mater Res A 2008; 549-563
  24. B. Innocenti, Biomechanical analysis of GEMINI SL total knee replacement implant designs up to 155° of flexion. LINK 999_WP_001_2017_Gemini-SL_en, 2019